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Abstract: Slow waves in intracranial pressure (ICP) and 
related signals seems of interest to evaluate the dynamic 
autoregulation, i.e. by comparison of the frequency links 
between an intracranial signal, e.g. ICP, cerebral blood 
velocity (CBV), and arterial blood pressure (ABP). To 
clarify the links, we compared two frequency methods 
based on coherence function to estimate the influence of 
ICP, ABP  and CBV on couples, respectively CBV-ABP, 
ICP-CBV and ICP-ABP, of slow waves in the B and the 
UB bands. We found that B and UB waves activity in 
ICP, CBV and ABP had reciprocal influences, except for 
the UB activity in ICP-CBV link which seems to be less 
sensitive to ABP. These data confirmed the interest of to 
analyse the slow wave activity to evaluate dynamic 
autoregulation. The interest of taking into account the 
reciprocal influence of  the signals must be evaluated. 
Keywords: coherence function, partial coherence, slow 
waves, autoregulation, intracranial pressure 
 
 

I. INTRODUCTION 

 
In intensive care unit, severe head injured patients are 
monitored with many tools informing on the 
biological status of pathophysiological mechanisms. 
Data are extracted from different biological signals, 
e.g. intracranial pressure (ICP), arterial blood pressure 
(ABP), cerebral blood velocities (CBV), cerebral 
perfusion pressure (CPP≈ ABP-ICP). The knowledge 
of autoregulation status, i.e. the capacity of the brain 
to maintain a relatively constant blood flow (CBV) in 
spite of CPP variations, is of interest but is less 
analysed and mainly by invasive methods.  
The slow waves (e.g. pressure, velocity …) are present 
in physiological and pathophysiological conditions. 
First described by Janny [5] and Lundberg [11], they 
can be segmented in three bands : IB below 0.008 Hz, 
B ]0.008; 0.05[ Hz and UB ]0.05; 0.2[ Hz with the 
terminology introduced by Lemaire [9]. They seems to 
correspond to a vascular activity which is different 
function of the bands: B band is mainly dependant of 
the body vascular tree, and the UB band of a local 
vascular tree, as in the brain [4]. They can be used for 
the evaluation of the dynamic autoregulation by 
analysing the links between ICP and ABP slow B 
waves [6][10]. To determine the role of a third signal, 
on the links on couple of  signals (ICP – ABP; ABP – 
CBV; CBV – ICP) we used two frequential methods: 
ordinary coherence and partial coherence. 
 
 
 

II. METHODOLOGY 
 
We recorded severe head injured patients function of 
the standard medical guidelines. Current medical 
transducers were used to collect data which were 
recorded with a software developed in our unit (URN) 
(sampling rate = 8 samp/sec). We computed results in 
off-line software in periods free of artefact. Each 
period had 34 min duration and was segmented in 8 
blocks, with a frequential resolution of  3.9 mHz.. We 
investigated B and UB bands. 
Coherence function. We can compare coherence 
function as a frequential correlation [1][3][12][13]. 
This function is based on the link between two signals 
for a  given frequency. The function γ²xy for a couple 
(x, y) is based on spectral power Sxx : 
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We computed coherence function for 3 couple of 
signals : (ICP, ABP), (ICP, CBV), (CBV, ABP). The 
value of the function evolves between 0, no link, and 
1, one signal is the resultant of the other for a given 
frequency. We chose the frequency with the highest 
amplitude peak in the B and UB bands respectively 
FB, FUB. 
Partial coherence was carried out following the 
methods of Bendat & Pierson [1][7][8][14]. The 
partial coherence was computed for FB and FUB. The 
partial coherence for a pair of signals (x and y1) in 
relation to a third signal (y2), resumed by (x, y1)y2 is 
obtained from the ordinary coherence of x and y1 of 
which we removed the influence to a third signal (y2).  
Statistics. Values of coherence were tested using 
Student's t-test after a Fisher's z-transformation to 
obtain estimates with approximately normal 
distribution [13]. Only the data considered as 
statistically significant were accepted. A Bland and 
Altman test [2] was performed on the accepted data to 
provide limits of agreement between the two 
coherence methods. For each segment of data the 
difference of memberships was plotted against their 
mean value. The mean of the differences m and their 
standard deviation sd were then computed. The limit 
of agreement was admitted as 4 times the sd. We 
considered that if this limit was in order of the 
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maximal value of the function, i.e. 1, then the results 

obtained by the two methods were different.  
 
 

III. RESULTS 
 

The partial and ordinary coherence were computed on 
65 recorded periods. The mean values for the signals 
were: ICP (mmHg) = 16,35 ± 3,19, ABP (mmHg) = 
100,19 ± 3,31, and CBV (arbitrary units) = 108,48 ± 
59,81.  
B band: 
The mean value of FB were: ICP = 39,3 ± 11,2 mHz, 
CBV = 21,8 ± 11,5 mHz and ABP = 41,7 ± 9,9 mHz. 
The FB frequencies for ICP and ABP were very 
closed and high, in contrast to CBV’s frequencies 

which were lower. 
Fig 1: (ICP, ABP) and (ICP, ABP)CBV representations 

The mean values for (ICP,ABP) and (ICP, ABP)CBV 
were respectively: 0,82 ± 0,12 and 0,71 ± 0,19. The 
limit of agreement with Bland and Altman was 0.39. 
then we considered that ABP played a role in the link 
between ICP and CBV. 

Fig 2: (ICP, CBV) and (ICP, CBV)ABP representations 
The mean values for (ICP, CBV) and (ICP,CBV)ABP 
were respectively : 0,66 ± 0,15 and 0,85 ± 0,13. The 
limit of agreement with Bland and Altman was 0,39. 
then we considered that ABP played a role in the link 
between ICP and CBV. 

Fig 3: (CBV, ABP) and (CBV, ABP)ICP representations 

The mean values for (CBV,ABP) and (CBV,ABP)ICP 
were respectively : 0,64 ± 0,17 and 0,71 ± 0,2. The 
limit of agreement with Bland and Altman was 0,44. 
then we considered that ICP played a role in the link 
between ABP and CBV. 
 

UB band: 
The mean value for FUB were for ICP = 74,4 ± 18,7 
mHz; CBV = 108,1 ± 35,2 mHz and ABP = 81,6 ± 
19,6 mHz. The frequency domain for ICP and ABP 
are closer than CBV domain.  

Fig 4: (ICP, ABP) and (ICP, ABP)CBV representations 
The mean values for (ICP,ABP) and (ICP, ABP)CBV 
were respectively : 0,92 ± 0,06 and 0,73 ± 0,2. The 
limit of agreement with Bland and Altman was 0,43. 
then we considered that CBV played a role in the link 
between ICP and ABP. 

Fig 5: (ICP, CBV) and (ICP, CBV)ABP representations 
The mean values for (ICP, CBV) and (ICP, CBV)ABP 
were respectively : 0,72 ± 0,18 and 0,78 ± 0,16 The 
limit of agreement with Bland and Altman was 0,31. 
then we considered that ABP played a role in the link 
between ICP and CBV. 

Fig 6: (CBV, ABP) and (CBV, ABP)ICP representations 
The mean values for (CBV,ABP) and (CBV, 
ABP)ICP were respectively: 0,71 ± 0,18 and 0,79 ± 
0,18. The limit of agreement with Bland and Altman 
was 0,38. then we considered that ICP played a role in 
the link between ABP and CBV. 
In conclusion, in the B band, each signal influences 
links between the others. In the UB band we found the 
same influences, except for ABP which seemed to 
have no, or a low, influence on the links between ICP 
and CBV. 
 
 

IV. DISCUSSION 
 

In spite of the different mean values of FB and FUB 
for ICP, ABP and CBV, although ICP and ABP values 
are closed (for the two bands) we found influences, 
pondered function of the bands, between the signals. 
This suggest that the bands are the main elements, 
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more than the frequencies, taking place in the links 
between the signals. 
In the B band, the (CBV, ABP)ICP mean value is 19% 
upper the (CBV, ABP) mean value. Even if these 
values seem closed, the influence of ICP on this 
couple is not negligible and showed that ICP seems to 
play a role in the control of autoregulation, even out of  
intracranial hypertension conditions, as demonstrated 
by our data. 
For (ICP,CBV)ABP, mean value is 22% most 
important than mean value of ordinary coherence. 
This could be explained by the strong biological  link 
between the CBV and ABP, modulated by the 
cerebro-vascular resistances. This could also 
explained the difference between (ICP, ABP)CBV and 
(ICP,ABP).  
UB band seems to represent a phenomena mainly 
local which could be illustrated by the fact that (ICP, 
ABP) was different of (ICP, ABP)CBV showing that a 
great part of this link is underlying by CBV. The 
influence of CBV is in order of 20% to the link 
between ICP and ABP. The comparison between (ICP, 
CBV) and (ICP, CBV)ABP suggested that ABP could 
play a poor role in the links of the UB waves. (the 
limit of agreement is the weakest of the six 
comparisons). It reinforces the idea about UB band. 
Our results, concerning the different influences of 
ICP, also suggests that it seems to be necessary to 
include its analysis when autoregulation is evaluated, 
not only by slow waves analysis, by non–invasive 
methods, e.g. CBV versus ABP.   
The differences between coherence functions, 
ordinary and partial, doesn't call into question the 
interest of the ordinary one. It only shows than we 
under or over estimate the degree of links but no the 
links themselves. 
The explication on the poor influence of signals on the 
links could be explained by the existence of non-linear 
links, as evoked by Robertson [14].  
 
 

V. CONCLUSION 

 
Our results show the importance of the links, and their 
complexity, between the slow waves on different 
biological signals. The clinical implications of these 
data must be evaluated.  
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